Methods of Introducing System Models into Agricultural Research

Laj R. Ahuja and Liwang Ma, Editors

Book and Multimedia Publishing Committee
April Ulery, Chair
Warren Dick, ASA Editor-in-Chief
E. Charles Brummer, CSSA Editor-in-Chief
Sally Logsdon, SSSA Editor-in-Chief
Mary Savin, ASA Representative
Mike Casler, CSSA Representative
David Clay, SSSA Representative
Managing Editor: Lisa Al-Amoodi

Advances in Agricultural Systems Modeling 2
Transdisciplinary Research, Synthesis, and Applications
Laj Ahuja, Series Editor
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>vii</td>
</tr>
<tr>
<td>Preface</td>
<td>ix</td>
</tr>
<tr>
<td>Contributors</td>
<td>xiii</td>
</tr>
<tr>
<td>1. A Protocol for Parameterization and Calibration of RZWQM2 in Field Research</td>
<td>1</td>
</tr>
<tr>
<td>2. Special Features of the HERMES Model and Additional Procedures for Parameterization, Calibration, Validation, and Applications</td>
<td>65</td>
</tr>
<tr>
<td>K.C. Kersebaum</td>
<td></td>
</tr>
<tr>
<td>3. Parameterizing LEACHM Model for Simulating Water Drainage Fluxes and Nitrate Leaching Losses</td>
<td>95</td>
</tr>
<tr>
<td>Jay D. Jabro, John L. Hutson, and Ann D. Jabro,</td>
<td></td>
</tr>
<tr>
<td>4. Special Features of the SPACSYS Modeling Package and Procedures for Parameterization and Validation</td>
<td>117</td>
</tr>
<tr>
<td>L. Wu and A. Shepherd</td>
<td></td>
</tr>
<tr>
<td>5. Special Features of the DayCent Modeling Package and Additional Procedures for Parameterization, Calibration, Validation, and Applications</td>
<td>155</td>
</tr>
<tr>
<td>S.J. Del Grosso, W.J. Parton, C.A. Keough, and M. Reyes-Fox</td>
<td></td>
</tr>
<tr>
<td>6. Special Features of the EPIC and APEX Modeling Package and Procedures for Parameterization, Calibration, Validation, and Applications</td>
<td>177</td>
</tr>
<tr>
<td>Xiuying Wang, Armen Kemanian, and Jimmy Williams</td>
<td></td>
</tr>
<tr>
<td>7. Parameterization of the GPFARM-Range Model for Simulating Rangeland Productivity</td>
<td>209</td>
</tr>
<tr>
<td>S.G.K. Adiku, L.R. Ahuja, G.H. Dunn, J.D. Derner, A.A. Andales, L. Garcia, and P.N.S. Bartling</td>
<td></td>
</tr>
</tbody>
</table>
8
Spatial Relationships of Soil Properties, Crop Indices, and Nitrogen Application Pattern with Wheat Growth and Yield in a Field
Ole Wendroth, K. Christian Kersebaum, G. Schwab, and L. Murdock

9
Parameterization of Energy Balance Components and Remote Sensing in Systems Modeling
Jerry L. Hatfield

10
Quality Assurance of Weather Data for Agricultural System Model Input: A Case Study using the Walnut Creek Watershed in Central Iowa

11
Modeling Winter Wheat Production across Europe with WOFOST—The Effect of Two New Zonations and Two Newly Calibrated Model Parameter Sets
Joost Wolf, Rudi Hessel, Hendrik Boogaard, Allard de Wit, Wies Akkermans, and Kees van Diepen

12
Inverse Modeling with RZWQM2 to Predict Water Quality
Bernard T. Nolan, Robert W. Malone, Liwang Ma, Christopher T. Green, Michael N. Fienen, and Dan B. Jaynes

13
Estimating DSSAT Cropping System Cultivar-Specific Parameters Using Bayesian Techniques
James W. Jones, Jianqiang He, Kenneth J. Boote, Paul Wilkens, C.H. Porter, and Z. Hu

14
The STICS Crop Model and Associated Software for Analysis, Parameterization, and Evaluation

15
A Synthesis of Current Parameterization Approaches and Needs for Further Improvements
L.R. Ahuja and Liwang Ma

Index

About the Series
Agricultural systems are by nature complex ecosystems. Numerous interacting factors involving soil, plant, climate, and management components must be taken into account. These systems also need to consider production, environmental, and societal issues for the sustainability of agriculture. Because of the complex nature of agricultural systems, modeling is a key tool that aids in understanding the intricacies of the interactions and delivers a myriad of potential outcomes to users world-wide. This book is designed to guide scientists and other professionals in methods of parameter estimation, calibration, and validation of agricultural system models. As these models become more available to explore new management strategies and to extend information to larger scales, proper parameterization, calibration, and validation are critical to their use. This book is essential because as models are more widely used, they help advance research and guide producers and policy makers on agricultural systems that impact societal issues and needs. Because system modeling is vitally important to the understanding of agricultural systems, the American Society of Agronomy, the Crop Science Society of America and the Soil Science Society of America support the objectives of this book, which will help model users apply the proper techniques when using system models.

Charles W. Rice
2011 SSSA President

Maria Gallo
2011 CSSA President

Newell Kitchen
2011 ASA President
Potential Value of System Models in Agricultural Research and the Need for Helping Field Researchers in Using Models

To develop sustainable agricultural systems that address environmental challenges, the field of agricultural research needs to develop more quantitative guidance and site-specific decision tools to help producers. To this end, field research requires a quantitative whole-system approach to help optimize the complex interacting factors. The process level models of cropping systems, based on synthesis and quantification of disciplinary knowledge and important interactions among the system components, meet this challenge. These models integrated with cutting-edge field research will greatly enhance the value and efficiency of research for developing sustainable agriculture, enable a fast transfer of technologies to farmers, and inform policymakers and the general public on the major issues and tradeoffs of alternatives.

These system models require some input data about the system and need to be parameterized, calibrated, and validated correctly with good field experimental data at selected locations in the region. They can then be used to: (i) synthesize all other experiment data, (ii) extend current research results to multiple years of historical climate beyond the limited experimental years and to other soils in the area to evaluate the long-term sustainability of cropping and management systems in the area, (iii) derive the new optimum cropping and management strategies for future selective field testing, and (iv) derive simpler management guides or tools for producers. Furthermore, to prepare for projected climate-change effects on water availability and agricultural production with increased temperatures and carbon dioxide, there is an urgent need for validated models to project the effects of these changes on agricultural systems in the United States and the world.

A major difficulty that field scientists, students, and other users of agricultural system models face is the appropriate parameter estimation and correct model calibration. Many models are often misused and the results published without proper parameterization, calibration, and validation. Reviewers seldom look into parameterization, calibration, and validation of all important system components (e.g., water balance, N balance, phenology, yield components) other than the yield and some measured variables. Model users are not properly trained, often due to a lack of good documentation and guidance on systematic parameterization and calibration for a model. With development of Windows based
user interfaces, it becomes easy for model users to run a model, but it does not guarantee correct use of a model. In most cases, a model user focuses more energy on the system components that he/she is most familiar with and leaves the rest untouched, using default values. There are science documentations available for some models, but how to interpret the science in terms of measurable or derivable model parameters in a given agricultural system is another, totally different process.

The knowledge and experience of model parameterization largely resides with the model developers. They are the ones who truly know the weaknesses and strengths of their models and the best ways to estimate and calibrate the model parameters. When the developers made the decisions on what components to include in their models and at what level of detail, they had an idea of the parameters needed and where to get them. This knowledge is usually not available to users in a systematic way and is scattered in many publications (usually, not in detail). Therefore, the concept of systematic parameterization and calibration, and even validation, of a system model is not fully comprehended by users. Furthermore, the processes and model parameters are well related in the user interfaces, and users have difficulty identifying the ones related to their particular studies. In addition, a lack of methodology in model parameterization makes model results not reproducible and least likely to generate new knowledge beyond what experimentalists already have gained in the field.

Objectives of this second volume of the Advances in Agricultural Systems Modeling series, therefore, were to create a “methodology volume” that contains the above much-needed information for model users. One objective of this book series is to promote the use of system models to enhance and extend field research. To accomplish this goal, it is vitally important to devote a volume to helping field scientists and other model users in proper methods of parameter estimation, calibration, validation, exploring new management options, and extension of experimental results to other weather conditions, soils, and climates. The proper methods are the key to realizing the great potential benefits of modeling an agricultural system. This volume contains information on the input data required and step-by-step procedures for parameter estimation, calibration, validation, and extended applications for the major models, illustrated with examples. To avoid duplication, we tried to describe these procedures in detail for one major model, and then special features of other models. This information will help users to correctly parameterize and use each model component without the need to fully understand the theory. This book also contains chapters that address further improvement of parameterization methods, field sampling and measurement of model inputs and parameters, effective properties for spatially variable soils, quality control of weather and other inputs, automatic parameter estimation software, and some new innovative methods to create simple management guidelines for farmers. We hope this book will serve as a linkage between models and field research. It will not only promote correct model application to complement and quantify field research, but also
create new knowledge and identify knowledge gaps. We tried to have a user friendly and uniform format in presenting the methods as much as possible, to make it easier and attractive for the field scientists, currently not exposed to models, to start using them. Many of the models are provided on a companion CD.

The final synthesis chapter seeks to identify: (i) the best set of current procedures from across the models; (ii) knowledge gaps and research needed to further improve parameter estimation, calibration, and validation methods for users; (iii) required research to improve concepts in the models so as to make the parameters more biophysically based and less of empirical coefficients, and either directly measurable or related to some easily measured data; (iv) the means to balance the complexity of process and parameters; (v) determination of effective parameters for a spatially variable field and for temporally variable conditions; (vi) relationships of model results across different soils, climates, and scales; and (vii) simpler ways of documenting model components for users.

We wish to convey one important feature of the volumes in the new series Advances in Agricultural Systems Modeling. We have made an utmost effort to ensure the quality of each volume, with two to three (in some cases even more) anonymous peer reviews of each contribution. We have tried to ensure originality of each contribution in terms of new synthesis and quantification of knowledge in the topic area, which would be useful for further improving and advancing system models as well as advance science and further research. Each contribution is, therefore, treated as a review and synthesis paper, much like a review paper in a journal.

L.R. Ahuja and Liwang Ma, Editors
USDA-ARS, Agricultural Systems Research Unit
Fort Collins, Colorado
Contributors

Adiku, S.G.K. Dep. of Civil and Environmental Engineering, Colorado State Univ., Fort Collins, CO 80523
(sadiku@mail.colostate.edu)

Ahuja, L.R. USDA-ARS, Agricultural Systems Research Unit, Fort Collins, CO 80526 (Laj.Ahuja@ars.usda.gov)

Akkermans, Wies Plant Research International, Bornsesteeg 47, 6700 AA Wageningen, The Netherlands

Andales, A.A. Dep. of Soil and Crop Sciences, Colorado State Univ., Fort Collins, CO 80523 (allan.andales@colostate.edu)

Bartling, P.N.S. USDA-ARS, Agricultural Systems Research Unit, Fort Collins, CO 80526 (pat.bartling@ars.usda.gov)

Bergez, J.-E. INRA, UMR 1248 AGIR, BP 52627, 31326 Castanet Tolosan Cedex, France

Boogaard, Hendrik Alterra Research Institute, Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands

Boote, Kenneth J. Agronomy Dep., Univ. of Florida, Gainesville, FL 32611

Buis, S. INRA, UMR 1114 EMMAH, Domaine Saint Paul- Site Agroparc, 84914 Avignon Cedex 9, France (samuel.buis@avignon.inra.fr)

de Wit, Allard Alterra Research Institute, Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands

Del Grosso, S.J. USDA-ARS and Natural Resource Ecology Lab., Colorado State Univ., Fort Collins, CO 80523 (delgro@nrel.colostate.edu)

Derner, J.D. USDA-ARS, High Plains Grasslands Research Station 8408 Hildreth Road Cheyenne, WY 82009-8899 (justin.derner@ars.usda.gov)

Dunn, G.H. USDA-ARS, Agricultural Systems Research Unit, Fort Collins, CO 80526 (gale.dunn@ars.usda.gov)

Fienen, Michael N. USGS, Wisconsin Water Science Center, 8505 Research Way, Middleton, WI 53562 (mnfienen@usgs.gov)

Flerchinger, G.N. USDA-ARS, Northwest Watershed Research Center, Boise, ID 83712

Garcia, L. Dep. of Civil and Environmental Engineering, Colorado State Univ., Fort Collins, CO 80523 (luis.garcia@colostate.edu)

Green, Christopher T. USGS, Bldg 15, Mckelvey Building, 345 Middlefield Road, Menlo Park, CA 94025-3561 (ctgreen@usgs.gov)

Green, T.R. USDA-ARS, Agricultural Systems Research Unit, Fort Collins, CO 80526

Guérif, M. INRA, UMR 1114 EMMAH, Domaine Saint Paul- Site Agroparc, 84914 Avignon Cedex 9, France

Guillaume, S. INRA, UMR 1248 AGIR, BP 52627, 31326 Castanet Tolosan Cedex, France

Hatfield, Jerry L. USDA-ARS, National Laboratory for Agriculture and the Environment, 2110 University Blvd., Ames, IA 50011 (jerry.hatfield@ars.usda.gov)

He, Jianqiang INRA, UMR1095, Génétique, Diversité et Ecophysiologie des Céréales, F-63100 Clermont-Ferrand, France

Hessel, Rudi Alterra Research Institute, Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands

Hoogenboom, G. AgWheatNet, Washington State Univ., Prosser, WA 99350

Hu, Z. Dep. of Agricultural and Biological Engineering, Univ. of Florida, Gainesville, FL 32611

Hutson, John L. School of the Environment, Flinders Univ., Adelaide 5001, Australia

Jabro, Ann D. School of Communications and Information Systems, Robert Morris Univ., Moon Township, PA 15108.

Jabro, Jay D. USDA-ARS, Northern Plains Agricultural Research Lab., 1500 N. Central Ave., Sidney, MT 59270 (jay.jabro@ars.usda.gov)

Jaynes, Dan B. USDA-ARS, National Laboratory for Agriculture and the Environment, 2110 University Boulevard, Ames, IA 50011-0001 (dan.jaynes@ars.usda.gov)

Jones, James W. Dep. of Agricultural and Biological Engineering, Univ. of Florida, Gainesville, FL 32611 (jimj@ufl.edu)

Justes, E. INRA, UMR 1248 AGIR, BP 52627, 31326 Castanet Tolosan Cedex, France

Karlen, D.L. USDA-ARS, National Laboratory for Agriculture and the Environment, 2110 University Boulevard, Ames, IA 50011-0001 (doug.karlen@ars.usda.gov)